Aromatic thioglycoside inhibitors against the virulence factor LecA from Pseudomonas aeruginosa.

نویسندگان

  • Jacques Rodrigue
  • Géraldine Ganne
  • Bertrand Blanchard
  • Catherine Saucier
  • Denis Giguère
  • Tze Chieh Shiao
  • Annabelle Varrot
  • Anne Imberty
  • René Roy
چکیده

Three small families of hydrolytically stable thioaryl glycosides were prepared as inhibitors of the LecA (PA-IL) virulence factor corresponding to the carbohydrate binding lectin from the bacterial pathogen Pseudomonas aeruginosa. The monosaccharidic arylthio β-d-galactopyranosides served as a common template for the major series that was also substituted at the O-3 position. Arylthio disaccharides from lactose and from melibiose constituted the other two series members. In spite of the fact that the natural ligand for LecA is a glycolipid of the globotriaosylceramide having an α-d-galactopyranoside epitope, this study illustrated that the β-d-galactopyranoside configuration having a hydrophobic aglycon could override the requirement toward the anomeric configuration of the natural sugar. The enzyme linked lectin assay together with isothermal titration microcalorimetry established that naphthyl 1-thio-β-d-galactopyranoside () gave the best inhibition with an IC50 twenty-three times better than that of the reference methyl α-d-galactopyranoside. In addition it showed a KD of 6.3 μM which was ten times better than that of the reference compound. The X-ray crystal structure of LecA with was also obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thiourea-based spacers in potent divalent inhibitors of Pseudomonas aeruginosa virulence lectin LecA.

A new divalent highly potent inhibitor of the Pseudomonas aeruginosa lectin and virulence factor LecA was prepared. It contains two thiourea linkages which were found to be in the Z,Z isomeric form. This brings the spacer into an elongated conformation required to bridge the two binding sites, which results in the chelating binding mode responsible for the high potency.

متن کامل

Mannose-centered aromatic galactoclusters inhibit the biofilm formation of Pseudomonas aeruginosa.

Pseudomonas aeruginosa (PA) is a major public health care issue due to its ability to develop antibiotic resistance mainly through adhesion and biofilm formation. Therefore, targeting the bacterial molecular arsenal involved in its adhesion and the formation of its biofilm appears as a promising tool against this pathogen. The galactose-binding LecA (or PA-IL) has been described as one of the P...

متن کامل

Covalent Lectin Inhibition and Application in Bacterial Biofilm Imaging

Biofilm formation by pathogenic bacteria is a hallmark of chronic infections. In many cases, lectins play key roles in establishing biofilms. The pathogen Pseudomonas aeruginosa often exhibiting various drug resistances employs its lectins LecA and LecB as virulence factors and biofilm building blocks. Therefore, inhibition of the function of these proteins is thought to have potential in devel...

متن کامل

Potent divalent inhibitors with rigid glucose click spacers for Pseudomonas aeruginosa lectin LecA.

The synthesis of a new rigid spacer based on carbohydrate-triazole repeating units and their incorporation into divalent systems is described. Inhibition studies showed that a well-matched system with a rigid spacer with flexible ends leads to the most potent inhibition of Pseudomonas aeruginosa lectin LecA.

متن کامل

Pseudomonas Aeruginosa Lectins As Targets for Novel Antibacterials

Pseudomonas aeruginosa is one of the most widespread and troublesome opportunistic pathogens that is capable of colonizing various human tissues and organs and is often resistant to many currently used antibiotics. This resistance is caused by different factors, including the acquisition of specific resistance genes, intrinsic capability to diminish antibiotic penetration into the bacterial cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 11 40  شماره 

صفحات  -

تاریخ انتشار 2013